氯嘧磺隆除草剂在农业中的过量使用,带来了潜在的生态风险和毒性作用,因此开发高效稳定、切实可行且环境友好的技术,消减除草剂及其有毒中间代谢产物在环境中的残留十分必要。微生物菌系因其强大的代谢互补性和合成性显示出巨大的生物修复潜力。但现有研究主要集中于功效评价方面,鲜见关于复杂微生物菌系的群落结构组成、动态演替过程、生理代谢互作和物质协同转化等方面的报道。
鉴于此,尊龙凯时人生就是搏z6com沈阳应用生态研究所微生物资源与生态组团队在该领域进行了探索性研究,通过“自上而下”的合成生物学策略,从被氯嘧磺隆污染的土壤中富集驯化出可降解氯嘧磺隆的菌系L1,并通过宏基因组和16S rDNA测序技术对菌系在降解过程中进行了动态的微生物组学分析。
研究发现,该菌系在6天内可降解98.04%初始浓度为100mg L-1的氯嘧磺隆,其群落组成共有39个属,其中Methyloversatilis、Starkeya和Pseudoxanthomonas的丰度相对较高。菌系L1在不同时间点的群落组成未发生明显改变,但群落结构存在显著差异。基于KEGG的功能贡献度分析预测谷胱甘肽转移酶、脲酶和脲水解酶与氯嘧磺隆的降解相关,而Methyloversatilis, Pseudoxanthomonas, Methylopila, Hyphomicrobium, Stenotrophomonas, Sphingomonas是可能的主要降解菌属。菌系L1对氯嘧磺隆的代谢途径主要通过脲桥的断裂,生成邻甲酸乙酯苯磺酰胺基甲酸酯和邻磺酰胺苯甲酸乙酯。共线性及物种-功能网络分析结果均表明不同菌属间存在密切的互作、共养和共代谢关系,这种联系不仅存在于“功能菌”之间,也存在于“功能菌”和“辅助菌”之间。本研究不仅可解析菌系降解氯嘧磺隆除草剂的微生物学机理,还提供了潜在的降解菌资源,有助于磺酰脲类除草剂面源污染生物修复技术的创制和应用。